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D~lE~rNAT~ON OF THE AVERAGE CHA~CTER~STICS OF ELASTIC F~E~ORKS* 

A.G. KOLPAKOV 

A method is proposed for the approximate calculation of the average 
elastic characteristics of fine-celled framework structures vf periodic 
configuration. The method is based on apprvximation of the "cell problem" 
of the theory of averaging /l-4/by problems on the deformation of 
appropriate structuresof beam, shell, etc., types. It is shown that the 
approximate values obtainable for the average characteristics and the 
solution of their appropriate problems are distinguished from the exact 
solutions by a quantity determined only by the error of the model being 
used. Exsmples are considered, namely, beam and box frameworks, and the 
construction of a framework with negative Poisson's ratios. 

Methods for the average description of bodies containing a large 
number of fine vacancies /l, 2/ enable the structure of pervdic configuration 
to be replaced by the consideration of continuous bodies similar in 
mechanical behaviour but with so-called average characteristics. The 
problem of finding the average characteristics is reduced in /2/ to the 
so-called cell problem of elasticity theory whose solution is quite 
difficult. At the same time, the solution of the cell problem in framework 
structures whose periodic element is a beam- or shell-type structure can be 
obtained by approximate methods to any accuracy, which is governed merely 
by the selection of the model. 

An elastic structure of periodic configuration with perodicitiyy cell (PC) in the form 
of a parallelepiped P, = EP~ = {EX : x E P,) is considered, where PI x= {x E R”: -~,/2 Q z, Q &Z, 
i = 1, . . ., n) (n = 2,s) is a rectangular parallelepiped with a characteristic length of the 
sides equal to one (pl --If. The elastic material does not occupy the whole PC P, but only a 
partK,,which can be represented in the form K, = ER%. Under the condition that the 
characteristic (absolute or relative) PC dimension E-+ 0, production of the average is 
possible /2/. To determine the average elastic constants {i& of a medium formed on the basis 
of the PC PL thepart Kr occupied by a material with the elastic constants {ailk,) Should 
minimize the functional /2/ 

in the set of functions {H,'(p,))" under the additional conditions 

s u(x)dx=O (2) 
F-1 

u- 'k(r&+ss%)E El (31 

Here and henceforth, n, is a class of functions periodic in P,(e=,t$ are basis unit 
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vectors of the Cartesian coordinate system). Afterwards, the average elastic constants are 
expressed in terms of the solution of problem (l)-_(3) denoted by me@ (the indices 
from condition (3)) /2/ 

a, B are 

Z~T~=E *& 
z 
Q,j~,fdefu("e)ij(defu~)ktdx (4) 

It is convenient to transfer to the differential mode of writing the problem (l)-_(3). 
The Euler equation for (l)-_(3) has the form 

for any function cp E {Hz1 (PI))" satisfying condition (2) and the condition that follows from 
(3) 

0 @)E n, (6) 
By virtue of the arbitrariness of the values of the function q(s) within the domain K, 

it follows from (51 that in this domain the function u satisfies the equilibrium equation with 
zero mass forces: fa,nt(defuf~&,l=& By virtue of the arbitrariness of the values of 
the domain P,\K, we obtain that 

cp(z) in 

5 
u(x)dx=O 0) 
I 

We consider the integral with respect to 8P, fl c?K, in (5) (i.e., over the common part 
of the boundaries of the PC P, and the domain X, occupied by the elastic material). Since 
the function q(x) is periodic in P,, the integral mentioned can be rewritten in the form 

i $ [Qijkl tdef u)kCj (x) i- Qijkl (defu)klnj (x- PjeJl ‘Pi (XI dx 
j-1 r,C;BK, 

@) 

where r~ is the face of the PC P1 perpendicular to the axis O.T, and intersecting it at rI = 

M2. The coordinates of the vector normal to the face I'j are {ai( = (0, . ...&, . . . . 0} 
and of the vector normal to the opposite face are (O,...t-~ff,...r~). On each of the faces fj 
the set of traces of the functions from the space {H,r(P,))" that satisfy (2) and (3) compact 
in the space {Lr(rJ)" /5/; consequently it follows from (8) that 

aijkl (def u)kln, (X) -i- aijkl (def u)ktnj (A: - Irje,) = 0 

for x E r, ,Q dK,. The quantities O, = {Uijkl (defu)*mj} determine the stress vector. Hence 

e,fx)+o,(x- p>ej) = 0, X E &Fj lq aR1 19) 
The third term in (5) yields the following condition: the normal stresses are 

(def u)kl n,) = 0 on 8P1 \ (aPI fi dk‘,) (i, e. , 
% E IQijki 

0% the part of the boundary of the domain K,that 
does not intersect the faces of the PC P,) . The formulation of the problem is obtained. 

Let a Ceil structure (i.e., a str'dcture occupying the domain K, of the PC P,) be fcrmed 
by elements havin-; characteristic thicknesses of the order of hr,..,,h (n = 2,3) in the 
direction of the coordinate axes). Depending on whether one or two of the quantities h, are 
small: O<ki< pi -t, we have a beam or plate (shell). The requirement that the ht must 
be fixed, although small, non-zerc numbers is essential here. Without the imposition of this 
condition, condition 14) in /2i, the sufficient condition for averaging, would not be satisfied. 
In practice, we can confine ourselves to the case when 10” <hi/pi< IO-' /b-8/. The beam, 
plate, etc. thecry problems that occur later are understood tc be approximate solutions of the 
initial problem cf elasticity theory with a certain accuracy a (in the norms to be mentioned 
later!. 

Average characteristics of a plaze beam framework. Let us consider a plane framework with 
a PC PI of the type shown in Figs.l-3. Let the width of the elements forming the domain K, 
satisfy the condition 0 < hi<pi- i and let the domain mentioned be occupied by an elastic 
material with Young's modulus E and Poisson's ratio v. The solution of the elasticity theory 
problem of the deformation of such a structure is approximated by the solution of the problem 
of the deformation of a system of rigidly clamped beams (at 'heir points of intersection) /7/ 
that generally operates under tension and bending. We will describe the beam deformation 
within the framework of the hypothesis of undeformed normals /b-8/. 

We will construct a problem corresponding to the initial problem. Because the mass forces 

and stresses on the beam faces that do not intersect the PC P, equal zero, the displacements 
of each of the beams satisfy the well-known equilibrium equations with zero mass forces /6-S/. 
The corallaries of conditions (2), (3), (9) require a more detailed examination. We let t‘=, 
w, denote the displacements of points on the middle axis of the beam numbered withthesubscript 
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a in the direction ala: tangent to the undeformed axis of the beam and the direction e-~, 
normal to this same axis. The displacements u of points of the beam considered as a solid are 
related to {v,, wa } by the hypothesis of the undeformed normal /6/: II = u e V&a + w&a + E 

&-%A where N, is the normal direction to the deformed axis of the beam (&=%x -I- w,'slo 
/6, 7/), iE[-&f2, h&l is the coordinate across the beam axis. 

Fig.1 Fig.2 

In the case under consideration condition (2) results in the condition 

Fig.3 

(m is the number of beams forming the cell structure). Integration is over the beam axes 
denoted by Lo, a = 1, . . ..?a. 

We examine the junction of beam s belonging to adjacent PC or the ends of beams on opposit- 
faces of the PC (Fig.1) by virtue of the periodicity of the problem under consideration. 
Condition (9) results in a deduction about the oppositeness of the forces on both sides of the 
line AC when the oppositeness of the normals to opposite faces of the PC P, is taken into 
account. Furthermore, the elements ABC and ACD are in equilibrium under the effect of zero 
external forces and strains in the sections AB, AC and AC, AD. We hence obtain that the 
strains in the sections AB and AD with the form h',e,,+ Qo%, where A',, QII. are the tensile 
and transverse forces /7, 9/, are opposite. Since the moments on both sides of the line AC 
are opposite by virtue of (91, the moments in the sections AB and AD are opposite by virtue 
of the equilibrium condition for the elements ABC and ACD. 

Furthermore, noting that the sections AB and AD are oriented oppositely (the direction 

ela enters the element ABC a?.d emerges from the element ACD, see Fig.l!, we obtain the 
condition 

N=enz + Qoem, nf,~nl vv 
The quantities Km, Q=. df, mentioned, the tensile force, transverse force, and moment, 

are referred to identically oriented sections of the beam. 
The kinematic conditions resulting from (3) have the form 

vaela f- wcrepa-VA~,'e~a - li~(zYed $ r&J, Wa&ErL (12) 

The peroidicity of the first function is obtained as a corollary to condition (2) in 
application to the point A (Fig.1). The periodicity of the second function is obtained by 
imposing a requirement about conservation of the magnitude of the angle between the beam axes 
during deformation (in the general case this condition cannot be derived from the hypothesis 
of undeformed normals since thi s hypothesis is not applicable in the domain ABCD ). 

Conditions (11) and (i2) simplify considerably in the special case when the direction of 
the tangent to the undeformed beam axis is e,,E n,. In the case mentioned from (11) and (12) 
we have the condition 

nh, Qm Ma, K+IO. + ~.a,--/:(+ea + wv) 
wa'EITl, a=i,...,m 

(13) 

(since the sections AB,AD and AC coincide in this case). We note that if the tangent 
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direction to the beam axis e,e on the faces of the PC P, is normal to these faces, the 
condition w,'EIl, is already a direct consequence of (3) and the hypothesis of undeformed 
normals. 

Approximate values of thti elastic constants. The beam theory problem was considered 
above as a problem from whose solution a certain displacement field U approximating the true 
displacement field II determined from the solution of problem (l)-_(3) can be constructed on 
the basis of the kinematic hypothesis taken. We denote the accuracy of this approximation (the 
error of the model) by a, i.e., 

[u-Uilijldefu -ddefUJj4(P3<a (14) 
we introduce the quantity 

which it is natural 
the functions u=a) 
exact values of the 
(15) 

Remarks. 1’. As is seen from the formula obtained, to estimate the closeness of the 

to call approximate values (in the sense of their being used to calculate 
of the average elastic constants. The quantities (Awua) approximate the 
average elastic constants {&~a) given by (4) since by virtue of (4) and 

)&ibv6--A ~MlYi&JI aijtl [(def u”b)ij (dd u*)u - (f6) 

exact and approximate values of the average elastic constants , it is necessary to have an 
estimate of the quantity IjU’l~lj. Such estimates can be obtained in specific cases, as is done 
below. 

.?O, For a-y,fi== 6, expressions (41 and (34) agree with twice the elastic strain 
energies corresponding to the displacement fields use and U*. 

Estimate of the closeness between the solutions of the average problem and the prob3em 
with coefficients {&,&. According to (21, the displacements vI in the initial framework 
structure converge as e-+0 to the sclution v of the elasticity theory problem of the 
deformation of a continuous medium with the elastic constants {&u~) given by (4). This last 
problem has the well-known form 

[a r)kfch, I]. j z 53, ” )BQ z v” (17) 

Convergence holds in the following sense ,/2,/: let 4 be the domain occupied by the framework 
structure (union of cells ci the fo+m PC), and QE the don,ain occupied by the intrinsically 
elastic material (union cf the domain K,). Then /2/ 

II \‘L - v III& - b(hl, . *-, fh El iiS, 

where for any fixed h,> 0 the quantity 6(h,, . . ..h.,,e)+O as E-O. 
We con.sidertheprokLertz of the deformation of a medium with the elastic constants (A~va) 

defined above (that approximate {&*,a) to the accuracy of (16)! 

tAi,klVk. I],, a fit V bQ = "' (19) 

AS fCilCWS from ,/2/, the operator in (191 is positive-definite. We denote its ellipticity 
factor by j3 (hi,...,&) lsince 0 can depend and, as will be seen later, actually depends on 

h . . *, lh)* We esimate the difference between the solutions of problems (17) and (19I.Compiling 
+$‘e problem for the difference between the solutions of (17) and (191 and multiplying the 
equation therein by v -v, we take account of (16) and obtain the estimate 

It follows from (@) and (20: that 

Since h,) 0 is a fixed number, by virtue of the recalled results /2/, we obtain frcm 

(21) 
lim 11 vc- v IlrllQ~~ < 4% 122) 
C-4 
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The estimates (161, (201-(22) show that the approximate values of the elastic constants 

&W~ can generally be calculated by the propose& method to any accuracy determined only by 
the error in the model (the estimate (16)) t where the solution of problem (19) will approximate 
the solution oftheinftial and average problems with an accuracy also determined just by the 
selection ofthemodel (the estimates (20)-(22)). 

Construction of the quantities {AM& ensuring & given accuxacy of the approximation of 
the elastic constants andthesolutions is not trivial because of the dependence of the 
coefficients (A crsva} and the quantities fi(h,, . . ..A.,). il?f’l,lV[ on 4,. ..,h,,. By establishing the 
dependence of the quantities listed on &,*...,h in specific cases, conditions on the error 
of the model a can be obtained that are required for the evaluation of fa,,} to a given 
accuracy. 

Plane rectangular beam framework. We consider a framework whose PCP,is shown in Fig.2. 
We apply the method described above for the approximate calculation of the average framework 
characteristics. We note that the directions e,, are periodic in PI in the case under 
consideration and conditions (11) and (12) can be taken in the form (13). 

10. a= B* As can be seen conditions (13) correspond to the case of tension on the beam 
structure shown in Fig.2 in the direction of one of the coordinate axes. In the case a k @ = 
1, the displacement field is Ur* = z,el in the horizontal beam while u" = 0 in the vertical 
beam. According to (15), we obtain 

The quantities h,, pr are shown in Fig.2. 
consi~~;a~i,=,'~" = 2(o I= 2, B = 4). Conditions 113) reduce to the following in the case under 

(v,e, f v,e,l,-=+pp, ke, + aSellS = p2-e~ (23) 

la*', w:, Wfrn are periodic in [--p&2, ~~121, i = 1, 2 (if), 3. f(p&2) - f (--p1!2)). 
The problem of bending (without tension) of the beam system shown in Fig.2 corresponds 

to conditions (23) for a symmetric structure (Fiy.2). In addition to the equilibrium conditions 

WIIV = 0, lut" e 0 (24) 

the equilibrium condition of an element lying at the intersection of the beams should be 
considered here. Since only moments (there is no beam tension) act on it I@$ = ,?$~~I12 (l- 
v*)I+ wi', then 

hl$(wl"(+ 0)-~~"{-0))-h*~(~~(~O)-w~(-O))~O (25) 
Because of symmetry the point of intersection of the beam axes does not experience 

displacement, i.e., 
u'i (-4) = u'j (-0) = 0, i = 1, 2 (26) 

Moreover, the angles between the beam axes do not change during deformation 

wr’ (;0) = am'* i = i, 2; Utt' (+.O) = -w*’ (-0) (25) 

Solving problem (23)-(27), which is not difficult, and using Remark 2, we obtain 

The xemaining elastic constants equal zero. 
Summarizing, we obtain the gcverning relationships for the average medium (in which the 

constarits (&e,.f} agree with the exact values of the average elastic constants {ii,& to an 
accuracy determined by estimate (i6.1 

A more detailed estimate o f the closeness between the approximate values of the elastic 
constants (Aogvb) and the sol*Jtions of the corresponding problem (19) to the exact values can 
be carried out in the case considered. As is seen from (29), the coefficients (Aosv4) and the 
ellipticity factor b (h,,h,) are of the order of iIEhi\ Consequently, the quantities ~lJa~~ and 
lv!j in (16), (20)-(22) are of the order of Eh;*. We hence obtain that the right side of the 
estimate (16) is of the order of a/(.!%~*) while the right side of the estimate (22) is of the 
order of crlfEh#. The possibility of obtaining the approximate values of the average elastic 
constants and the solutions of the appropriate problem by virtue oftheestimates presented 
follow from the fact that the error a can be mhde less than any given quantity (in particular 
a quantity of the fom h; "',rneJV) by selection of an appropriate model, while the order of 
the quantities ~(h,,~),~~~e~~, iI \'I[ is conserved as the errox a of the model diminishes. 
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As follows from the above, the hypothesis of undeformed normals that was used above can be 
utilized to compute the characteristics of a plane beam framework for Ehp3ri (the PC K, of 
the structure is formed by fairly stiff elements) to the accuracy of order a. To obtain (Aobva} 
with the required accuracy requires the use of more exact models in the general case (as is 
seen from before, the model possessing an accuracy a-h,@ would solve the problem in the 
general case). 

If o is understood to be the residual of the elastic strain energy in the modelling of 
the cellular structure, then the order of the right sides in (16), (22) is, respectively, a 
and a/(&h,*)*. 

The estimates (16), (20)-(22) enable us to deduce that as e-to the rectangular framework 
under consideration behaves as a solid elastic mediurr with governing Eqs.(29) to the accuracy 
determined above. By virtue of (29) orthotropy of the elastic constants is characteristic for 
the framework. Even fox a PC with identical dimensions in the directions of the Ox, and 0x2 
axes, the orthotropy is conserved. The presence of an analogous effect is noted /4/ in the 
problem of the bending of a perforated plate. The coordinate axes are smooth for the tensor 
of the elastic constants (A,& and the framework possesses a zero Poisson's ratio in these 
axes (to the accuracy determIned by (16)). Moreover, since the quantities hl<i, then, as is 
seen from (29!, the framework prossesses a shear modulus considerably less than its tensile 
modulus in these ssme axes. 

Spatial rectangular beam framework. Let the PC P,be formed by rectangular bars lying on 
the coordinate axes and having a width hi. heightHt,and end coordinates p&, -p&2, t = 1,2,3. 
If O<hl, Hi</~i -1, but are here fixed, the cell problem is approximated by a problem on 
the deformation of a system of beams similar to that examined above. The approximate governing 
relationships have the form 

The equations connecting u,2. E,3 and 022,&22 are obtained from the equations for ~~2.~22 
by permutation of the subscripts. As is seen from (30), the spatial framework retains the 
planar property noted above. 

Frameworksofthe types considered are utilized extensively as reinforcements in composite 
materials. In the case of fillers possessing low stiffness, the elastic characteristics of 
the compcsite are determined by the characteristics of the frame. Consequently, the low 
framework shear stiffness noted above results in smallness of the shear stiffness of the 
composites they bond, which is essential for the examination of composite plates and shells 
/lO, 111. 

Boxlike framework. Let the PC P, of a three-dimensiona I framewcrk have the form presented 
in Fig.2 in plane sections parallel tc the coordinate plane Ot222, while the third coordinate 
is z2 E f---)la’2, pJ21. if 0 < ki < pj -1. the cell problem is modelled by a problem on the 
deformaticn cf two plates fixed rigidly along their line cf intersection. The average governing 
eq;laticns (tc the acccracy given by (17): have the fcrm 

Uii La 
E(f - v) hiI _ 

(1 + V)(i - 2v) T;;iQ 

E hi iJQ== --&& j= 1, 2 
1+-c pi 

The eqilations connecting o12, El2 agree with those presented in (29) . AS follows from 

(311, a boxlike framework intheplane OfI% retains mainly the properties inherent in a plane 
framework. The fraoeworx behaves as an ordinary elastic material in the direction perpendicular 
to this plane: Poissor.'s ratio 1s positive, and the shear and tension moduli are of the same 
order. 

Framework structure with negative Poisson's ratios. For a plane orthotropic continilous 
medium (when the principal axes coincide with the corodinate axes), the relation between the 
elastic constants @XevaI I young's modulus El and Poisson's ratios v,has awell-known form /9/, 
in particular 

Elv,l(i - v2f = ~l122i~2222 

. are positive quantities /9/, Since Ha,,,, E,, and ili2 y2 the sign of Poisson's ratio vp 

agrees with the sign of . The same holds for Poisson's ratio V2 /9/. 
we consider the problem of the deformation of a plane framework structure whose PC P, is 

displaced in Fig.3. The solution, of this problem for /,,@I.- I approximates the solution of 
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the problem about the deformation of a system of rigidly clamped beama. Utilizing the hypothesis 
of the undeformed normal, we calculate the coefficient A,,,,. The solution is simplified if 
the presence of definite symmetry in the cell structure is used. Namely, a quadrant of the 
PC P, can be considered (Fig.3). We consider the problem of the equilibrium of the element 
in question for zero mass forces with the conditions 

(3% 

L.=u.=O at the point (9, 0). Ia=p=l, 

,?=lr=li at the points (0, _Itt), (3, -p) 

r=_‘l 4 , r=O at the point (F, 0) @=B=2) 

IL" =O at the points (0, Q). (&, F) for all mentioned a,6 

and, moreover, the solution of the problem is symmetrical about the line z1 = ~~14. 
It can be confirmed that merging the solutions of a problem of the kind mentioned for 

each cell structure quadrant yields the solution of the problem on the equilibrium of the 
structure displaced in Fig.3 with conditions (13) (the vector e,, is periodic). The solution 
of the problem about the equilibrium of a quadrant of a cell structure element with conditions 
(32) is constructed analytically. This easily reproducible solution is not presented because 
of its awkwardness. Calculations showed that for p1 = 2b,'2,pz= 4 -l/Z the coefficient 

takes a negative value (integration is along the axes of the cell structure quadrant). Therefcre, 
the framework with PC P, shown in Fig.3 in the axes mentioned here, behaves as a solid elastic 
medium with negative Poisson's ratios vl.vz to an accuracy given by the estimates (16), (20)- 
(221 as e-0. 
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